头像

胡倩倩

博士 教授 | 硕士生导师

学科:

职务:

研究中心:

导师类别: 硕士生导师

毕业院校: 浙江大学

办公电话:

地址: 综合楼653

邮编:

邮箱: qianqian_hu@163.com

研究方向

计算机辅助几何设计、几何迭代、数字几何处理、等几何分析等

社会服务领域

教育经历

  • 1997.09-2001.07, 浙江大学, 应用数学, 学士 

  • 2001.09-2004.07, 浙江大学,  应用数学, 硕士, 导师:王国瑾教授

  • 2005.02-2008.03, 浙江大学, 应用数学,博士, 导师:王国瑾教授


工作经历

  • 2017.12至今    浙江工商大学统计与数学学院    教授

  • 2015.08-2016.02 加州大学洛杉矶分校, Radiation Oncology Department, 访问学者, 导师: Dr. Dan Ruan

  • 2009.07-2017.12 浙江工商大学统计与数学学院     副教授

  • 2008.03-2009.07 浙江工商大学统计与数学学院     讲师

  • 2004.08-2005.02 香港科技大学计算机科学系Vision & Graphics lab, 研究助理, 导师:Prof. Chiew-Lan Tai


学术兼职

  • 中国工业与应用数学学会几何设计与计算专业委员会  委员

荣誉及奖励

  • 2007年获欧拉应用数学奖

  • 2008年获陆增镛CAD&CG(计算机辅助设计与图形学)高科技奖三等奖

  • 2008年获浙江省优秀毕业研究生称号

  • 2010年获浙江省高校科研成果奖二等奖   几何计算与几何逼近最优化

  • 2014年获校青年优秀科研成果二等奖


研究生课程

计算机图形学


本科生课程

数值代数、计算方法、数字信号处理、高等数学、线性代数等

发表论文

[1]   Qianqian Hu, Zhifang Wang, Ruyi Liang. Improved least-squares progressive iterative approximation for tensor product surfaces. Mathematics, 2023. (SCI)

[2]  Chongyang Deng, Zhihao Wang, Jianzhen Liu, Huixia Xu, Qianqian Hu. FC-NURBS curves: fullness control non-uniform rational B-spline curves. Communications in Information and Systems, 22(1), 131-146, 2022.

[3]   Hongwei Lin, Yunyang Xiong, Hui Hu, Jiacong Yan, Qianqian Hu. The convergence rate and necessary -and-sufficient condition for the consistency of isogeometric collocation. Applied Mathematics A Journal of Chinese Universities, 37(2), 272-289, 2022. (SCI)

[4]  Qianqian Hu, Jiadong Wang, Ruyi Liang. Weighted local progressive-iterative approximation property for triangular Bezier surfaces. The Visual Computer, 2022, 38, 3819-3830. (SCI)

[5]    Hu Qianqian, Wang Jiadong, Wang Guojin. Improved least square progressive iterative approximation format for triangular Bezier surfaces. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5), 777-783.(In Chinese)(EI)

[6]   Lin Hongwei, Xiong Yunyang, Wang Xiao, Hu Qianqian, Ren Jingwen. Isogeometric Least-Squares Collocation Method with Consistency and Convergence Analysis. Journal of Systems Science & Complexity, 2020, 33: 1656-1693.(SCI)

[7]  Hu Qianqian, Zhang Yanhui, Wang Guojin. The least square progressive iterative approximation property of low degree non-uniform triangular Bezier surfaces. Journal of Computer-Aided Design & Computer Graphics, 2020,32(3): 360-366.(In Chinese)(EI)

[8]   Lizheng Lu, Shiqing Zhao, Qianqian Hu. Improvement on constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials. Computer Aided Geometric Design, 2018, 61: 20-26.(SCI)

[9]   Hu Qianqian, Wang Weiwei, Wang Guojin. Piecewise Mӧbius Reparameterization of Rational Bézier Curves. Journal of Computer-Aided Design & Computer Graphics, 2018,30(7): 1230-1235. (In Chinese)(EI)

[10]  Wu jinming, Zhang Yu, Zhang Xiaolei, Hu Qianqian. On Integro Quintic Spline Quasi-interpolation. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5): 801-807.(In Chinese)(EI)

[11]  Lizheng Lu, Chengkai Jiang, Qianqian Hu. Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization. Computers & Graphics, 2018, 92-98.(SCI)

[12]  Guojin Wang, Huixia Xu, Qianqian Hu. Bounds on partial derivatives of NURBS surfaces. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(3): 281-293.(SCI)

[13]  Qianqian Hu. Explicit G1 approximation of conic sections using Bézier curves of arbitrary degree. Journal of Computational and Applied Mathematics, 2016, 292, 505-512. (SCI)

[14]  Hongwei Lin, Sinan Jin, Qianqian Hu, Zhenbao Liu. Constructing B-spline solids from tetrahedral meshes for isogeometric analysis. Computer Aided Geometric Design, 2015, 35-36, 109-120. (SCI)

[15]  Qianqian Hu.G1 approximation of conic sections by quartic Bézier curves. Computers & Mathematics with Applications, 2014, 68(12): 1882-1891. (SCI)

[16]  Qianqian Hu.Constrained polynomial approximation of quadric surfaces. Applied Mathematics and Computation, 2014, 248: 354-362. (SCI)

[17]  Hongwei Lin, Qianqian Hu, Yunyang Xiong. Consistency and Convergence Properties of the Isogeometric Collocation Method. Computer methods in applied mechanics and engineering, 2013, 267: 471-486. (SCI)

[18]  Qianqian Hu. An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces. Applied Mathematics and Computation, 2013, 219: 9308-9316.(SCI)

[19]  Qianqian Hu, Huixia Xu. Constrained polynomial approximation of rational Bézier curves using reparameterization. Journal of computational and applied mathematics, 2013, 249: 133-143.(SCI)

[20]  Huixia Xu, Qianqian Hu. Approximating uniform rational B-spline curves by polynomial B-spline curves. Journal of computational and applied mathematics, 2013, 244: 10-18. (SCI)

[21]  Qian-Qian Hu. Approximating conic sections by constrained Bézier curves of arbitrary degree. Journal of computational and applied mathematics, 2012, 236(11): 2813-2821. (SCI)

[22]  HU Qian-qian, WANG Guo-jin. Rational cubic/quartic Said-Ball conics. Applied Mathematics A Journal of Chinese Universities, 2011, 26(2): 198-212.(SCI)

[23]  Qian-qian Hu, Guo-jin Wang. Representing conics by low degree rational DP curves. Journal of Zhejiang University-SCIENCE, 2010, 11(4): 278-289.(SCI)

[24]  Qianqian Hu, Guojin Wang. Multi-degree reduction of disk Bézier curves in L2 norm. Journal of Information & Computational Science, 2010, 7(5): 1045-1057.(EI)

[25]  陆利正, 胡倩倩, 汪国昭. Bézier曲线降阶的迭代算法. 计算机辅助设计与图形学学报, 2009, 21(12): 1689-1693.(EI)

[26]  QianQian Hu, GuoJin Wang. Optimal multi-degree reduction of triangular Bézier surfaces with corners continuity in the norm L2 . Journal of Computational and Applied Mathematics, 2008, 215(1): 114-126.(SCI)

[27]  Hu Qianqian, Wang Guojin. A novel algorithm for explicit optimal multi-degree reduction of triangular surfaces, SCIENCE IN CHINA, Series F, 2008, 51(1): 13-24. (SCI)

[28]  胡倩倩, 王国瑾. 球域Bézier曲面的精确边界及其多项式逼近. 浙江大学学报工学版,  2008, 42(11): 1906-1909.(EI)

[29]  QianQian Hu, GuoJin Wang. Improved bounds on partial derivatives of rational triangular Bézier surface. Computer-Aided Design, 2007, 39(12):1113-1119. (SCI)

[30]  QianQian Hu, GuoJin Wang. Necessary and sufficient conditions for rational quartic representation of conic sections. Journal of Computational and Applied Mathematics, 2007, 203(1), 190-208. (SCI)

[31]  QianQian Hu, GuoJin Wang. Explicit multi-degree reduction of Said-Bézier generalized Ball curves with endpoints constraints, Journal of Information and Computational Science, 2007, 4(2), 533-543.(EI)

[32]  QianQian Hu, GuoJin Wang. Rational quartic Said-Ball conics. The 3rd Korea- China Joint Conference on Geometric and Visual Computing, 2007, 94-102.

[33]  Hu Qianqian, Wang Guojin. Geometric meanings of the parameters on rational conic segments, SCIENCE IN CHINA, Series A, 2005, 48(9), 1209-1222. (SCI)

[34] 王国瑾, 胡倩倩.一类有理Bézier曲线及其求积求导的多项式逼近. 高校应用数学学报A, 2004, 19 (1): 89-96.


纵向科研

  • 2019.12021.12  基于重新参数化的几何近似造型技术及其应用  浙江省自然科学基金  主持

  • 2015.12017.12  面向NURBS的逼近技术及其在等几何分析中的应用研究浙江省自然科学基金  主持

  • 2013.12014.12  高精度几何逼近造型方法及其应用研究  浙江大学CAD国家重点实验室开放式课题  主持

  • 2013.12015.12  CAD中高精度几何近似造型技术及应用研究  国家自然科学基金  主持

  • 2010.12011.12  计算几何中几何逼近造型的若干关键技术研究  浙江省自然科学基金  主持


横向科研

出版专著

软件成果

专利

教学论文

  • 以解决问题为线索的线性代数课程教学改革    浙江工商大学教改论文集

  • 将科研融入到日常教学中——香港科技大学是如何实现教研相长的    浙江工商大学教改论文集

教学项目

  • 2021.09-2022.12 互联网金融+人工智能背景下数值代数教学模式改革与实践  教育部协同育人项目  主持

  • 2014.01-2015.12 基于应用能力培养的线性代数课程教学改革研究                  校高等教育研究课题  主持


出版教材

教学奖励

其他

手机扫描二维码

即可访问本教师主页

总访问量:10
11:18