|
王江峰博士 教授 | 博士生导师,硕士生导师 |
学科: 统计学 职务: 应用概率统计研究所所长 研究中心: 导师类别: 博士生导师,硕士生导师 毕业院校: 同济大学 办公电话: 地址: 邮编: 邮箱: wjf2929@163.com |
|
王江峰博士 教授 | 博士生导师,硕士生导师 |
学科: 统计学 职务: 应用概率统计研究所所长 研究中心: 导师类别: 博士生导师,硕士生导师 毕业院校: 同济大学 办公电话: 地址: 邮编: 邮箱: wjf2929@163.com |
王江峰,男,博士(后),浙江工商大学统计学教授,博士生导师,校西湖学者拔尖人才,全国工业统计学教学研究会第九界、第十届理事(国家一级协会),教育部学位委员会学位论文评审专家,国家社会科学基金评审和成果鉴定专家。2004 年浙江大学概率统计专业毕业,获硕士学位;2010 年同济大学数理统计专业毕业,获博士学位;2012 年同济大学经管学院博士后出站;2018 年在加拿大滑铁卢大学统计与精算系访问一年。
研究方向:复杂生存数据分析、高维数据分析、分位数回归方法、非参和半参数方法等。主持国家社科基金面上项目2项,以及教育部人文社科基金等省部级一般或重点项目5项;在《中国科学》、《数学学报》(中,英文版)、《数学进展》、《系统科学与数学》、《Front. Math. China》、《Statistics》、《J. Statist. Plann. Inference》、《Statist. Papers》、《Adv. Statist. Anal》、《Statist. Probab. Lett》等期刊上发表论文40余篇,其中特级、一级以及 SCI/SSCI收录的论文近40篇。
复杂生存数据分析、高维数据分析、分位数回归方法、非参和半参数方法等
l 2007/03-2010/06, 同济大学, 数学科学学院, 数理统计方向, 博士, 导师:梁汉营教授
l 2001/09-2004/03, 浙江大学, 数学科学学院, 概率统计专业, 硕士, 导师:张立新教授
l 1997/09-2001/06, 江西师范大学, 数学与统计学院,数学教育专业, 学士
l 2019/12-至今, 浙江工商大学, 统计与数学学院, 教师, 教授、应用统计系副主任、研究所所长
l 2018/01-2019/01, 加拿大滑铁卢大学, 统计系, 访问学者, 合作导师:Grace.Y.Yi教授
l 2013/04-2019/12, 浙江工商大学, 统计与数学学院, 教师, 副教授
l 2010/06-2012/10, 同济大学, 经济与管理学院, 博士后, 合作导师:马卫民教授
l 2004/03-2013/04, 杭州师范大学, 数学学院, 教师, 讲师
l全国工业统计学教学研究会第九届理事会理事(国家一级学会), 2018.12-2022.12
l全国工业统计学教学研究会第十届理事会理事(国家一级学会), 2023.01-2026.12
l国家社科基金通讯评审专家、成果鉴定专家
l美国数学学会评论员 评论号: 092654
l教育部学位委员会学位论文评审专家
[37]. Ke-Ang Fu, Yang Liu and Jiang-Feng Wang*. Precise large deviations in a non-stationary risk model with arbitrary dependence between subexponential claim sizes and waiting times. Communications in Statistics –Theory and Methods, Accepted. SCI
[36]. Ke-Ang Fu and Jiang-Feng Wang*.Moderate deviations for a Hawkes-type risk model with arbitrary dependence between claim sizes and waiting times.Communications in Statistics –Theory and Methods. Accepted. SCI (通讯作者)
[35]. Zhen-Min Rao, Jiang-Feng Wang*, Ding-Kai Chen and Lei Wang.Robust estimators and variabe selection for partially linear modelswith censoring indicators missing at random. Applied Mathematics A Journal of Chinese Universities (Chinese), 2023,38(1):1-17. 国内一级
[34]. Hong-Xia Xu, Guo-Liang Fan and Jiang-Feng Wang. Jackknife empirical likelihood for the error variance in linear errors-in-variables models with missing data. Communications in Statistics –Theory and Methods.2022, 51(14): 4827-4840. SCI
[33]. Jiang-Feng Wang*, Yang-Cheng Zhou and Ju Tang. Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and its application. Front. Math. China, 2022, 17(1): 117-139. SCI
[32]. Ke-Ang Fu, Yang Liu and Jiang-Feng Wang*. Precise large deviations in a bidimensional risk model with arbitrary dependence between claim-size vectors and waiting times. Statistics and probability Letters, 2022, 184: 109365. SCI和SSCI双检索(通讯作者)
[31]. Guo-Liang Fan, Shi-Wen Rao and Jiang-Feng Wang*. Empirical likelihood estimation for partially nonlinear varying coefficient errors-in-variables models with missing data. Journal of System Science and Mathematical Science (Chinese),2021, 41(9): 2643-2659. 国内一级
[30]. Jiang-Feng Wang*, Guo-Ding Li, Ying-Lei Li and Yi Xiong. Weighted double-kernel local linear estimators of conditional quantiles with censoring indicators missing at random. Journal of System Science and Mathematical Science (Chinese),2021, 41(9): 2621-2642. 国内一级
[29]. Jiang-Feng Wang*, Wei-Jun Jiang, Fang-Yin Xu and Wu-Xin Fu. Weighted composite quantile regression with censoring indicators missing at random. Communications in Statistics –Theory and Methods,2021, 50(12): 2900-2917. SCI
[28]. Yang-Cheng Zhou,Jiang-Feng Wang*, Wen-Wen Yuan and Hui-Li Zhang. Weighted kernel estimators of conditional quantiles with censoring indicators missing at random. Applied Mathematics A Journal of Chinese Universities (Chinese), 2020, 35(4): 379-392. 国内一级
[27]. Jiang-Feng Wang*, Yang-Cheng Zhou and Ju Tang. Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and its application. Advances in Mathematics (Chinese), 2020, 49(4): 463-480. 国内一级
[26]. Ke-ang Fu, Meng-xue Wu, Wei Huang and Jiang-Feng Wang*. Asymptotics for the self-weighted LAD estimator of ACD models. Applied Mathematics A Journal of Chinese Universities (Chinese), 2020, 35(3): 253-264. 国内一级
[25]. Hong-Xia Xu, Zhen-Long Chen and Jiang-Feng Wang. Quantile regression and variable selection for partially linear model with randomly truncated data. Statistical Papers. 2019, 60(4): 1137–1160. SCI
[24]. Jiang-Feng Wang*, Liang-Hua Qiu and Hui-Zeng Zhang. Weighted local composite quantile regression estimation in non-parametric regression model under right-censored data. Applied Mathematics A Journal of Chinese Universities (Chinese), 2019, 34(1): 11-24. 国内一级
[23] Jiang-Feng Wang*, Guo-Liang Fan and Li-Min Wen. Composite quantile regression estimators of regression function with censoring indicators missing at random. Journal of System Science and Mathematical Science (Chinese), 2018, 38(11): 1347-1362. 国内一级
[22]. Mei Yao, Jiang-Feng Wang* and Lu Lin. Double-kernel local linear estimator of conditional quantile under left-truncated and dependent data. Acta Mathematica Sinica (Chinese), 2018,61(6): 963-980. 国内一级
[21].Hong-Xia Xu, Guo-Liang Fan, Zhen-Long Chen and Jiang-Feng Wang.Weighted quantile regression and testing for varying-coefficient models with randomly truncated data. Advances in Statistical Analysis. 2018,102(4):565–588. SCI
[20]. Mei Yao, Jiang-Feng Wang*, Lu Lin and Yu-Xin Wang. Variable selection and weighted composite quantile estimation of regression parameters with left-truncated data. Communications in Statistics –Theory and Methods. 2018, 47(18):4469-4482. SCI
[19].Guo-Liang Fan, Zhi-Qiang Jiangand Jiang-Feng Wang*. Empirical likelihood for high-dimensional partially linear model with martingale difference errors. Communications in Statistics – Theory and Methods. 2017, 46(22):11228-11242. SCI
[18]. Lin-Na Zhang, Li-Min Wen, Jiang-Feng Wang and Wei Wang. Evaluation of individual RBNS loss reserving based on generalized linear model. Acta Mathematicae Applicatae Sinica (Chinese),2017,40(4): 573-593. 国内一级
[17]. Mei Yao, Jiang-Feng Wang* and Lu Lin. Asymptotic normality for a nonparametric estimator of conditional quantile with left-truncated data. Communications in Statistics – Theory and Methods. 2017, 46(13): 6280-6292. SCI
[16]. Yi Zhang, Li-Min Wen, Jiang-Feng Wang and Wei Wang. The Credibility Estimation of Accident Year Mean in the Model of Stochastic B-F Reserve. Acta Mathematicae Applicatae Sinica (Chinese),2016, 39(2): 306-320. 国内一级
[15]. Jiang-Feng Wang, Xiao-Min Tian, Hui-Zeng Zhang and Li-Min Wen. Composite quantile regression estimation in non-parametric regression model under left-truncated data.Applied Mathematics A Journal of Chinese Universities (Chinese), 2015, 30: 71-83. 国内一级
[14] .Jiang-Feng Wang, Wei-Min Ma, Guo-Liang Fan and Li-Min Wen. Local linear quantile regression with truncated and dependent data. Statistics and probability Letters, 2015, 96 (1): 232-240. SCI
[13]. Jiang-Feng Wang, Wei-Min Ma, Hui-Zeng Zhang and Li-Min Wen. Asymptotic normality for a local
composite quantile regression estimator of regression function with truncated data.Statistics and Probability
Letters. 2013,83: 1571-1579. SCI
[12]. Guo-Liang Fan, Han-Ying Liang and Jiang-Feng Wang. Statistical inference for partially time-varying coefficient errors-in-variables models. Journal of Statistical Planning and Inference. 2013,143(3): 505-519. SCI
[11]. Jiang-Feng Wang, Han-Ying Liang and Guo-Liang Fan. Local polynomial quasi-likelihood regression with truncated and dependent data. Statistics.2013, 47(4): 744-761. SCI
[10]. Guo-Liang Fan, Han-Ying Liang and Jiang-Feng Wang. Empirical likelihood for heteroscedastic partially linear errors-in-variables model with a-mixing errors. Statistical Papers. 2013, 54(1): 85-112. SCI
[9]. Li-Min Wen,Jiang-Feng Wang and Xian-Yi Wu. A new class of credibility estimators under the generalized weighted premium principle. Communications in Statistics – Theory and Methods. 2013,42(3): 447–465. SCI
[8]. Jiang-Feng Wang, Han-Ying Liang and Guo-Liang Fan. Local M-estimation of nonparametric regression with left-truncated and dependent data. Science China, Mathematics, (Chinese), 2012, 42(10): 995-1015. 特级期刊
[7]. Jiang-Feng Wang and Han-Ying Liang. Asymptotic properties for an M-estimator of regression function with truncation and dependent data. Journal of the Korean Statistical Society. 2012, 41(3): 351-367. SCI
[6].Guo-Liang Fan, Han-Ying Liang and Jiang-Feng Wang. Empirical likelihood for heteroscedastic partial linear errors-in-variables model. Communications in Statistics – Theory and Methods. 2012,41:108-127. SCI
[5].Jiang-Feng Wang, Han-Ying Liang and Guo-Liang Fan. Asymptotic properties of conditional quantile estimator under left truncated and a-mixing conditions. Communications inStatistics – Theory and Methods. 2011,40: 2462-2486. SCI
[4]. Guo-Liang Fan, Han-Ying Liang, Jiang-Feng Wang and Hong-Xia Xu. Asymptotic properties for LS estimators in EV regression model with dependent errors. Advances in Statistical Analysis. 2010,94:89-103. SCI
[3].Jiang-Feng Wang and Han-Ying Liang. A note on the almost sure central limit theorem for negatively associated fields. Statistics and Probability Letters. 2008, 78: 1964–1970. SCI
[2]. Jiang-Feng Wang* and Feng-Bin Lu. Inequalities of maximum of partial sums and weak convergence for a class weak dependent random variables. Acta Mathematica Sinica, English Series. 2006, 22(3): 693-700. SCI
[1]. Li-Xin Zhang and Jiang-Feng Wang*.A note on complete convergence of pairwise NQD random sequence. Applied Mathematics A Journal of Chinese Universities (Chinese). 2004, 19(2): 203-208.
[1]. 删失指标随机缺失下分位数回归模型的研究及其应用,国家社会科学基金(面上项目), 2020.9—2023.12. 在研,主持
[2].复杂数据下CQR模型的研究及其应用,国家社会科学基金(面上项目), 2016.6—2019.12. 已结题, 主持
[3].不完全数据下分位数回归方法的研究及其应用, 教育部人文社会科学基金, 2015.9—2018.12. 已结题, 主持
[4].复杂数据下线性及部分线性CQR模型的研究, 国家统计局科研项目(重点项目),2017.1—2018.12. 已结题, 主持
[5].复杂数据下参数及半参数CQR模型的研究及其应用, 浙江省自然科学基金(面上项目),2017.9-2020.12. 已结题, 主持
[6].左截断及相依数据下的若干统计问题的研究,中国博士后科学基金, 2011.11-2012.10. 已结题, 主持
[7].复杂数据下参数及半参数CQR模型的研究及其应用, 浙江省一流学科(统计学)建设项目(重点项目),2017.9-2019.12. 已结题, 主持
[8].贝叶斯方法下下风险度量的非参数估计, 浙江省人文社科重点研究基地(统计学)(重点项目), 2014.11-2016.6. 已结题, 主持
[9].不完全数据下复合分位数回归方法的研究及其应用,浙江省教育厅项目,2015.9—2017.12. 已结题, 主持
[10].高频金融数据统计测度模型的拓展研究(19BTJ013),国家社会科学基金(面上项目), 2019.6—2022.12. 在研,主研(排名第2)
[11].中国城镇化驱动高质量发展的效应评估, 国家社会科学基金重大项目(子课题),2020.12—2024.12,在研,主研(排名第2)
[12].复杂模型的删失分位数回归估计及其在变点检测中的应用研究(17BTJ027), 国家社会科学基金(面上项目), 2017.6—2020.12. 已结题,主研(排名第3)
[13].基于广义半参数回归模型的统计推断以及应用研究(11401006),国家自然科学基金(青年项目), 2015,1-2017.12. 已结题,主研(排名第2)
[14].贝叶斯框架下风险度量的非参数估计及其应用研究(71361015),国家自然科学基金(地区项目), 2014.1-2017.12, 已结题,主研(排名第2)
[15].基于随机投资收益和索赔非平稳到达的时依风险模型研究 ,教育部人文社会科学基金,2017.7-2020.9,已结题,
主研(排名第3)
王江峰著. 左截断数据下的统计推断. 浙江工商大学出版社, 2022.(学校认定A类专著)
[1]. 思政理念下《概率论》课程教学改革思路及实现机制的探索与实践,浙江省高等学校课程思政教学研究项目,
2022.9—2024.8. 在研,主持
[2]. 基于MOOC的《概率论》混合式教学模式研究, 省级平台校级教学项目,在研,主持,2020.
[3].《概率论》课程思政课堂教学改革的探索与研究,校级本科教学改革项目,在研,主持,2021.
浙江省“十三五”新形态教材《概率论与数理统计》,共同主编,浙江工商大学出版社,2021.
基于BSP理念的统计学研究生应用能力培养模式探索与实践,浙江省教学成果奖二等奖,参与,2022.
手机扫描二维码 即可访问本教师主页 总访问量:10
|